Parameter Tuning of MOEAs Using a Bilevel Optimization Approach

نویسندگان

  • Martin Andersson
  • Sunith Bandaru
  • Amos H. C. Ng
  • Anna Syberfeldt
چکیده

The performance of an Evolutionary Algorithm (EA) can be greatly influenced by its parameters. The optimal parameter settings are also not necessarily the same across different problems. Finding the optimal set of parameters is therefore a difficult and often time-consuming task. This paper presents results of parameter tuning experiments on the NSGA-II and NSGA-III algorithms using the ZDT test problems. The aim is to gain new insights on the characteristics of the optimal parameter settings and to study if the parameters impose the same effect on both NSGA-II and NSGA-III. The experiments also aim at testing if the rule of thumb that the mutation probability should be set to one divided by the number of decision variables is a good heuristic on the ZDT problems. A comparison of the performance of NSGA-II and NSGA-III on the ZDT problems is also made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Adaptive Mechanism for Multi-objective Evolutionary Algorithms

Evolutionary algorithms can efficiently solve multi-objective optimization problems (MOPs) by obtaining diverse and near-optimal solution sets. However, the performance of multi-objective evolutionary algorithms (MOEAs) is often limited by the suitability of their corresponding parameter settings with respect to different optimization problems. The tuning of the parameters is a crucial task whi...

متن کامل

A Self Adaptive Penalty Function Based Genetic Algorithm for value-Bilevel Programming Problem

This paper propose a self adaptive penalty function for solving constrained value-bilevel programming problem using genetic algorithm. This self adaptive penalty function based genetic algorithm both used in the higher level and the lower level problem's solving process. In the constraint handing method, a new fitness value called distance value, in the normalized fitness-constraint violation s...

متن کامل

Efficient and Robust Parameter Tuning for Heuristic Algorithms

The main advantage of heuristic or metaheuristic algorithms compared to exact optimization methods is their ability in handling large-scale instances within a reasonable time, albeit at the expense of losing a guarantee for achieving the optimal solution. Therefore, metaheuristic techniques are appropriate choices for solving NP-hard problems to near optimality. Since the parameters of heuristi...

متن کامل

Multiobjective bilevel optimization

In this work nonlinear non-convex multiobjective bilevel optimization problems are discussed using an optimistic approach. It is shown that the set of feasible points of the upper level function, the so-called induced set, can be expressed as the set of minimal solutions of a multiobjective optimization problem. This artificial problem is solved by using a scalarization approach by Pascoletti a...

متن کامل

BILEVEL LINEAR PROGRAMMING WITH FUZZY PARAMETERS

Bilevel linear programming  is a decision making problem with a two-level decentralized organization. The textquotedblleft leadertextquotedblright~ is in the upper level and the textquotedblleft followertextquotedblright, in the lower. Making a decision at one level affects that at the other one. In this paper, bilevel linear programming  with inexact parameters has been studied and a method is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015